2010年2月9日星期二

The Slimming Plan

Susan was a very vain woman, always thinking that she was attractive and cute. Yet, she was really a chubby person. One day, while looking at her body in front of the mirror, she decided to slim down. She felt that the ordinary way of dieting would not be good for her body. So she turned to her good friend, Violet, for advice.

“There is only one place that is the most suitable for you to lose weight – prison!”

“What? You means I should stay in jail to carry out my slimming plan?”

“Don’t worry. Just commit a small crime and get yourself inside. You will need to do jobs like gardening, cleaning and other tasks which will burn your fat fast. Moreover, the food in prison is so terrible that I bet you will not have appetite to eat much. One the day you are set free, you will be very slim".”

The following days, Susan went to a supermarket to carry out her plan. Inside, she deliberately took out some expensive items surreptitiously. Just as she was about to leave the supermarket, the observant security guard stopped her and asked a female colleague to search her body. The unpaid item was found and Susan was sent to count and charged with theft. Everything was as planned. She gladly admitted the misdemeanor and the judge sentenced her to a six-month prison term. To everyone’s astonishment, she seemed happy with the verdict.

For the first few weeks, the food there was unpalatable that she ate only a little. “Good, if I continue like this, my weight will be reduced in no time and I shall become a pretty girl with may male suitors.” She thought to herself.

But the prison wardens seemed to take a liking for her. They tried to satisfy her in every way they would. They placed her in a comfortable cell and gave her delicious food. Having been deprived from good food for weeks, Susan regained her appetite and wolfed down all the food. Day by day, her weight actually increased instead of decreasing, but she did not notice. All she did was enjoy her life in prison – eating and sleeping, and then eating again.

Time seemed to fly and soon, she was released from prison on a sunny morning. On her way home, she thought she must have a slimmed down a lot. But upon reaching home and facing her mirror, what she saw was an obese, unattractive woman.

“Oh! Why? Why? Why? How did my plan fail? My beauty is ruined! Who would want to marry me?”

Knock. Knock. Knock. She answered the door, only to find two policemen outside smiling at her. “Miss Susan, we are sorry to tell you that you have to stay in prison for another six months. According to the law, your imprisonment term should be a year and a mistake was made.” One of them said gently.

“Oh! No, please! I do not want to gain weight again!”

2010年2月5日星期五

IE (Internet explorer) is shit

IE is the worst broswer I had ever seen and used. It is just like shit....never use IE if u can

2010年1月21日星期四

This is for testing

In the annals of stealth startups, Next Jump deserves its own chapter. It’s not often that a company can build a large and successful business for 15 years, raise $45 million in venture capital, hire 225 people, and sign up 60 percent of the Fortune 500 as customers without anybody ever hearing about it. Yet that is exactly what Next Jump did until the first story ever written about the company appeared in the New York Times last month. The $45 million came over the course of 8 rounds and all from angel investors, including early Google investor Ram Shriram and Deutsche Bank asset management chief Kevin Parker (who are both board members).

The company is now coming out of its shell, partly because it is so big that it can no longer hide. “Our thought was to stay quiet until it feels like we had an elephant under a hay stack,” CEO and founder Charlie Kim tells me during a recent visit to Next Jump’s Manhattan headquarters, which take up two floors of a downtown office building. Next Jump runs perhaps the largest set of direct merchant offers businesses in the world, making the growing preponderance of offers in social games seem primitive by comparison. It operates employee discount and reward programs on behalf of 90,000 corporations, organizations and affinity groups which reaches more than 100 million consumers.

Next Jump connects 28,000 retailers and manufacturers to these consumers, typically getting the merchants to offer deep discounts to its members. In Kim’s eyes, this is a much better way to advertise. His pitch to merchants everywhere is this: “Take your ad budget and use it to lower prices for targeted sets of customers. The user is in market, and conversion rates are through the roof.” According to Kim, Next Jump’s conversion rate on offers is 11 to 1, compared to 1000 to 1 or worse for typical Internet ad conversion rates.

In addition to Fortune 500 companies, it also runs rewards programs for the AARP, NEA, Dell, Borders, Hilton, and Mastercard, and reaches consumers directly through Overwhelming Offers (which is also an iPhone app) and small businesses through Corporate Perks. It also powers Yahoo’s Daily Deals. And Kim says that Next Jump drives more transactions than any other affiliate to Linkshare, Commission Junction, and the Google Affiliate Network. It derives revenues from corporations on a per-employee basis, as well as from merchants via transaction and advertising fees (for sponsored slots on its various deals Websites).

Next Jump’s origins are in local merchant coupon books for corporations and running corporate discount programs for their employees. It started out as a print catalog business out of Kim’s Tufts dorm room in the mid-1990s. By 1997 it went completely online because print costs kept going sky-high as merchants demanded the ability to update their offers more frequently. On the Web they can update them hourly if they want, and the feedback loop of what works and what doesn’t helps them fine-tune their offers accelerate the rate of transactions triggered by the deals.

It’s a data-driven business, which is what attracted Shriram to invest and become a board member in 2006—the last time the company raised money. (Shriram used to be the president of comparison shopping engine Junglee before it was sold to Amazon a dozen years ago). Shriram tells me:

It is about the Data, and building the data model is what takes time. Next Jump had to find a model that was a win-win for merchants and consumers alike that can scale. Through a process of trial and error and course corrections they ended up in a good place based on results I’ve seen—namely, users, user engagement and the participation of large employers in the program.

Next Jump has three very rich sources of data which it uses to target offers: a unique consumer demographic database, a transactional database, and a consumer preference database. “The consumer is reached through ‘buying circles’ inside their employer’s intranet,” explains Shriram. “We know most employees mostly shop on-line while at work. Businesses in turn, see special offers and attractive prices as a perk for their employees.”

Since it operates discount programs for roughly one third of all U.S. corporate employees, it is considered a non-traditional benefits provider and gets updated weekly on the employment status of 30 million workers (who also happen to be consumers). It gets part of the employee record, including things like name, address, employment status, home and work address, marital status, and sometimes even job title or salary grade. While it doesn’t have access to actual salaries, it knows enough to put people in the right buckets. “Income is the single largest predictor of future purchases,” says Kim, which makes sense. The more money you have, the more likely you are to spend some of it. But even Amazon doesn’t know your income other than what it can infer from your zip code.

Next jump gets transactional data from its merchants, credit card companies such as Mastercard, and affiliate purchases. But it’s preference database is perhaps the most interesting. Because it is seen as an employee perk, says Shriram, “HR departments inside companies and the individuals themselves are willing to engage in a level of preference data sharing that has not been seen in e-commerce before. The customer preference data allows for better targeting and ultimately superior conversions (around 10-11% vs 2% for the best commerce sites today).”

Consumers tell Next Jump not only what items they would like to buy, but at what price point they would be willing to buy it for. Across various of its services, consumers can set reminders for when specific products are on available for deeper discounts. For instance, you can say alert me when I can buy this pair of Nike running shoes for a 40 percent discount instead of the current 20 percent discount. Next Jump collects all of this data and presents it to participating merchants in an online dashboard (see screenshots below) which helps them model demand at differemt discount points.  The dashboard also shows them current sales, average sales for competitors, conversion rates, and helps them target by different age, income, location, whether they are new or existing customers, and other factors.

Every offer gets ranked and every user gets ranked.  Next Jump’s OfferRank takes into account the discount price below retail, the quality of the offer as voted by users, and the performance history of that merchant as measured by click-through rates, purchase rates, average transaction size, and other variables.  UserRank is based on how many reward points someone earns.  You earn points every time you make a purchase.  Retailers and manufacturers target their offers by UserRank above all other factors. The higher someone’s UserRank, the more they tend to shop.

Next Jump wants to match the best deals with the best shoppers. “Shopping and advertisng has always been the same to us,” says Kim. “Merchants are trying to connect with users and users are trying to connect with advertisers. It is a two sided problem.” Next Jump creates algorithms to reward not only good shoppers, but also good deals. Every time an opt-in offer email goes out, Next Jump measures the response rate. If someone stops responding that merchant is quarantined from that consumer. If the offers turn into spam, then everybody loses.

Merchants are willing to participate because the conversions are great, they get a lot of data to help them decide whether to step up their deals, and for the most part the deals aren’t terribly public so premium brands can use it as channel without diluting their premium pricing.

Kim knows his advantage lies with his data and improving the matches between buyers and sellers. That 11 to 1 conversion rate was 100 to 1 a year ago, and he wants to get it down to 3 to 1. In order to that, he needs better offer algorithms and is on an engineer hiring binge. Of his 225 employees, 150 are engineers. He hired 50 engineers last year, and plans to hire another 100 this year. Next Jump is one of the top engineering recruiters at MIT, Carnegie Mellon, and Georgia Tech.

If Kim keeps perfecting his shopping algorithms, you may never shop the same way again—and you won’t even know that you are doing anything differently .

aim1

aim2

2009年11月9日星期一

傲意网上线了

经过傲意团队的努力,傲意网终于上线了!
傲意网主要面向数据录入服务外包行业,傲意的核心系统傲意数据录入测试,可以精准的测试数据录入人员的技能,并且对用户的技能进行权威认证。该测试系统已经得到世界知名企业IAOP,Wipro和Avasant等的认可。对于企业用户,傲意是一个集员工培训,人才选拔,市场推广于一体的综合性BPO服务平台,对于个人用户,傲意网可以为用户提供一个集技能测试,等级认证,求职就业等综合服务。

http://www.oeval.com

敬请关注!!!

2009年9月20日星期日

2009年4月8日星期三

友游网:以游识友,携友同游!!!

给大家推荐一个新加坡方面的旅游网站: http://yoyoole.com

友游网:以游识友,携友同游!

http://yoyoole.com

每次去旅行之前,我们都要选择所去的地方,路线,还要对预订机票酒店等进行安排.网络上满是各种各样的旅行方面的信息,要从这些信息中选择出一些真的需要的,并不是一件简单的事情.并且查询信息的过程中还要不停的在不同的网站之间转换,往往很是麻烦.

针对这种情况,友游网提供了一个”一站式”(One-stop Travel Information Hub)的旅行信息库平台,这里嵌入了新加坡各个旅行社的网页,联系方式,有各地景点介绍,有各地旅行攻略,并且在这里还寻找志同道合的旅友. 在这里,全部信息都集中于此,不用转换网站即可查询到你所需的信息.

2008年12月13日星期六

Java Code

import java.io.*;
import java.util.*;
import java.util.ArrayList;

public class WSC_PJ {

/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
   try {
    //file IO lines, inp.txt is the input file, result.txt is the put file
       BufferedReader in = new BufferedReader(new FileReader("inp.txt"));
       BufferedWriter out = new BufferedWriter(new FileWriter("result.txt"));
             
       String str;
       while ((str = in.readLine()) != null) {
       
        //store the strings in the arraylist
        ArrayList<String> myArr = new ArrayList<String>();
         
        StringTokenizer st = new StringTokenizer(str);
       
        while (st.hasMoreTokens()){
        String temp_str=st.nextToken();
        temp_str=temp_str.replace(",", "");
       
           //System.out.println(temp_str);
        myArr.add(temp_str); //put all the informatin in the arraylist
                      
        }
       
        out.write("insert into cstb_item_desc values (");
       
        for(int i=0;i<myArr.size();i++){
       
        if(i==myArr.size()-1)
          out.write("'"+myArr.get(i)+"'"+");");
        else
          out.write("'"+myArr.get(i)+"'"+",");
        }
       
        out.write("\n");
       
       
       }
       
       in.close();
       out.close();
       
   } catch (IOException e) {
   
    System.out.println("Some error occurs!");
   }


}

}

2008年10月29日星期三

Taj Mahal

In the city of love, Agra,
There is a place of love, Taj Mahal;
which is called "A tear drop in the face of eternity".
It is peaceful and beautiful;
It is shinning and amazing;
It is fanstatic and romantic.
On the sun raising,
Golden sari covering;
On the sun falling,
Pink dress covering;
On the moon shinning,
Siliver cloth covering.

2008年10月21日星期二

Training 大合照


Training Ending



A group of us!

2008年10月9日星期四

Nice Lake and Beach



























2008年4月5日星期六

(虽然..但是..唉.).------.SRD 经历




星 期四的时候收到shell的feedback电话了, 跟我预料的一样,我没有符合shell的标准.唉....虽然结果在面试结束后已经可以感觉到了,虽然自己也知道自己真的跟shell的要求还是有很大的 差距的,虽然自己对shell的工作也不是很喜欢,但是被拒总是让人值得郁闷一段时间的.叹息2声,唉,唉...Shell 的SRD过去3天了,现在想想,还是觉得在那里真的自己学到了不少东西,也算是了解了不少东西.写下经历,算是给这次很难得到经历划上一个句号了,虽然不 完满.

SRD的前奏: practice section:
SRD 是安排在4月1号,刚刚好就是在愚人节那天.Shell看来对这个SRD是很重视的,邀请我们在SRD的前一天先参加一个关于SRD的briefing还 有practice section. 在这次,认识明天要一起参加SRD的team mates,跟他们聊天,感觉每个都是比较精明的人,仔细问了下他们有没有别的offer,好家伙: 一个是SMA的, 一个是Esson Mobil的, 一个是SIA engineering department, 另外的一个是工作2年了的,说起话来滔滔不绝....惊叹! HR人很好,很耐心的给我们讲解我们明天大概需要做的事情,但是就是她说话巨快无比,让人无名之中就感到了一股压力,在加上她说的东西..越发的压力大 了.Briefing完后,就把我们6个人divide成2个小group,然后就给我们一大堆材料关于一个case study的,让我们20分钟读完,讨论完,然后就每个小组present 5分钟...看到那些材料:有email, 有新闻,有report,有财务表格....马上心情就沉下来了.20分钟不说discuss了,估计要看完,分析完都不是简单的事情........结 果,present的时候感觉就很差.虽然只是一个practise section,但是已经明显的感觉到了自己的差距...晚上回去后还看了Chinese drama...看的时候还是在想着这个很让人郁闷的事情.

早上的穿皮鞋狂奔
我 的SRD时间安排在9:30,地点在shell的一个小岛上.在地图上看到去小岛坐船的那个小码头就是在PSA building旁边,当晚就觉得去到那边肯定很快的.所以早上起来的时候就不紧不慢.谁知道去到PSA building附近的时候,找小码头还是找了半天.当时看看时间,8:40了,还有5分钟而已了,要是错过了8:45分的船,还要再等半个小时,到时候 迟到可不是一般久了.于是马上找人问清了路,一路400米冲刺速度直奔小码头.当时是,衬衣,领带,皮鞋,奔流的汗水..还好我的冲刺速度不算差,刚刚好 赶上了船.

船开动了,看看新加坡慢慢远去,shell的小岛很快就在前面了..当时下岛的时候就在想,要是真的进来的话, 就每天都要坐船去这个小岛上工作,我会喜欢这种生活么?应该是不喜欢的吧...所以当时就对shell的激情有点降了下来.


SRD全记录
在 小岛登录,正好9:15,我的面试时间.我先是被安排到了一个房间,他们给我大量的材料给我一个小时时间阅读,然后就准备下5分钟的 presentation.材料大体是case study, 我作为shell在一个岛国的operation manager,然后shell在这个岛国上碰到很多方面的问题,我就是要从材料中分析主要的问题是什么,然后propose short term, medium term and long term plan for solving such issues. 除了要想出plan外,还有想到how to execute?, what if some difficulties comes in? what is the alternatives?.....总之就是分析分析再分析,20多页的材料,形式跟practice section的时候差不多.(这轮的心情的紧张的,充满压力的)

case study结束后,就是2个人分成一个小组一起讨论.题目是这样的,我们负责为shell的慈善机构选择该投钱在什么慈善project上面,为什么之类 的,然后2个人的小组选好自己小组的project后,6个人就坐在一起组成一个大组,一起讨论,大家各自说出自己选定project为什么好,有什么优 势之类的,然后指出对方的project中会出现的一些问题,反正就算是小组跟小组之间的PK吧. 然后各大manager就坐在我们旁边,看我们的defence,看我们active不active,看我们的idea好不好,还有看我们问的问题会不会 有point...第一次玩这种PK,感觉很有趣.郁闷的是他们说的英语很快,有很多我都不理解..结果我一个问题都没问.唉..讨论结束后,我们就作为 shell的代表,出席一个:"记者招待会",各大manager就扮演各个报社的记者这类的,提出各种各样的问题.比如:" I will tell my reader that Shell only care about small group of people since Shell choose this project......",然后我就要defence,要分析,要解释啊之类的.我算是比较幸运的一个了,问我的问题比较simple..看到一个比 较惨的就是他被manager不停的问,又不停的对他的回答否定..一直问到那个candidate的声音不断的上升..我当时暗自庆幸着..在这个环节 中,感觉到了自己跟其他candidate的差距真的还是挺大的,看他们回答问题很有point,而且临场变化很快,还有就是表达能力很强,这方面却刚好 是我的弱项..这轮过后的感觉就是没戏了,接下来的环节就去enjoy吧!(这轮的心情的郁闷的)

午餐在shell的小岛上的餐厅里, shell还真大方,吃得很是丰富:鸡汤,海参,鱼..等等..现在想想都觉得东西真好吃!然后饭后就是最后一轮的accessment了.这次是要求 present一个自己做过的project..个人project经验实在有限,不得不把2001的东西拿出来给他们看.这轮抱着enjoy it的心态去面对的,感觉也很少轻松,可以很clear多把自己做的,自己想到东西都表达出来.我show的地震检测系统还让那个regional manager很impressed,后来才知道原来他也是EE出身的....不过这轮里面还是发现很多问题, 就是他问我这个可以commerialize吗?怎么去做?然后就是可能会出现什么问题?怎么解决这些可能出现的问题...反正就是十万个为什么...我 当时就在想,我们做2001的时候大家就是本着要做出来的心态而已,谁真的会想过这么多的为什么呢? 所以,这轮有哑火了很多次...唉.(这轮到心情就完全的enjoy的)


离开Shell小岛
最后就登船离开shell小岛了.感觉自己应该是拿不到的,但是当时的心情还是蛮兴奋的,因为这次的SRD真的很unique的经历,自己的很多一直都不愿意承认的弱点很明显的都暴露出来了,还有很让郁闷的就是自己跟别人的差距啊....唉
Blogged with the Flock Browser

2008年2月14日星期四

晴天

窗前的轻风铃
注定了要随风共鸣
不远处的小树林
小松鼠欢快跳动在雨停
ding ding ding ding ding ding ding
ding ding ding ding ding ding ding ding ding ding
认识你的那一天,晴
看电影的那一天,晴
想念你的那一天,晴
好想在一个下着大雨的天
和你一起去狂淋一遍
几个周末的时间
小心尝试着的邀请
但偏偏却是没有的回音
只好独自在家啃榴莲
看看电影,数数星星
一颗,两颗,三颗星,
一颗,两颗,三颗星,
一直数到玫瑰星群都不愿停
羡慕肖邦可以弹奏美妙的钢琴
优美曲调诉说自己的心情
与你听
ding ding ding ding ding
ding ding ding ding ding ding ding
鼓起勇气的我相信
你就是那雨后快乐的蜻蜓
自由自在地飞不停
我唯有留下许愿心
希望你一直漂亮往前行

2008年2月13日星期三

2008年2月7日星期四

天净沙--圣淘沙新年夜

碧水银滩清风,
密林幽径欢声,
郁树小流花层.
抬头仰望,
苍穹处繁星盛.

2008年1月13日星期日

巴蜀人家后

轻雨润街清风抚,

百花从中香气浓.

众花斗艳引蜂蝶,

花芯苦泪有谁知.

2007年8月4日星期六

秋菊

春风抚掠万象苏,

暖满人间生机浓.

惊问菊花何不绽”,

笑答只为秋风开.




2007年7月29日星期日

2007年6月19日星期二

桂林行3记

桂林游之 漂流篇
(水调歌头)
晨间竹筏起,漂流漓江间.不知天宫巧匠,何时降凡尘.九马奔腾山壁,老人垂钓不语,绿水万象藏.山水国画景,只应在此间.
奇异山,宁静水,纯朴人,景甲天下,桂林盛名不虚传.淡云深山相拥,侣人携手晌景,浪漫应如此.但愿应不久,共携知己游.

桂林游之 阳朔篇

清晨轻车绕阳朔,
穿梭奇山丽水间.
月亮山旁传说起,
大榕树下绣球抛.
蝴蝶泉里瀑布泻,
遇龙河内竹筏漂.
骄阳非欲扰人兴,
奈何景美羞煞云.

桂林游之 大寨篇

(傍晚)
山间小道旁,梅子树,李子树,未名之树,树树竞绿;
瑶寨人家里,狗叫声,音乐声,孩童笑声,声声不息.
野花处处,
流水处处.
叹清新山风浪浪轻拂,
羡携手情侣双双倩步;
惬意如是,
浪漫如是.
田头蛙声,尤衬树林夜寂;
山涧泉音,更显空谷清幽.
抬头望天,山岚层层而星辰稀,
环顾四周,客栈重重而灯火明.

(晨间)
呼山气而心清爽,
触晨露而身湿润.
大迈步,唯恐错失日出刹那;
小休憩,不忘欣赏山中美景.
观景阁楼处,
稍抬头则天幕尽现,
轻低目则美景尽收,
摄影者,观景者,尽坐其间等日出.
朝阳出处,
云雾重重.
游人似醉,尽望东方明亮处,
朝阳似羞,深躲云间不见人.
山此时,浓雾披而蓬莱现,
田此时,浮云映而轻纱披.
山也蒙胧,
水也蒙胧.

(有感)
山固清,
水固秀,
人固纯,
奈何知己不在,
难享心中感怀!

2007年5月5日星期六

2007年3月29日星期四

2007年3月26日星期一

2007年3月15日星期四

山坡羊--大屿山行


秀峰如墨,

浓云如聚,

大屿山顶巨佛坐.

触山风,

心平和,

轻步四周思绪过,

忧愁万千都东逝了(liao).

心,也逍遥,

景,也逍遥.

2007年3月12日星期一

北航的美好回忆

她也许这正是生命之中的流星,转瞬即逝,但是她留给我的记忆却是
恒星,永远在照耀着我,给我以前进的动力。尽管在大学里仅仅呆了3个多月,但是
我们却一起打球,一起跳舞,一起看雪,一起努力。记得那是冬天
,也是我们即将来新加坡的时候,天下起了雪,好大好大!第一次见到雪的我好感动,好兴奋!和她一起玩雪!渐渐的,雪停了,我们也各自回去!晚上受到她的短信:"第一次看雪一定很高兴吧,很有新奇感吧!但是渐渐的,你就会厌烦了雪。我就是北方的雪,给你很新鲜的感觉,但是,久了之后呢?"

然后她又发了很多很伤感的诗句过来!然我莫名的感伤!我回到:
"我很喜欢雪,不是因为新鲜,而是感觉!"她无语,沉默!很快,就要离开了。在上飞机的时候受到她的短信:"我只是你遇到的一颗流星!"

我伤感!


起始篇:

终于,我进入了心目中的象牙塔。在这个全新的环境中
,我会有什么遭遇,什么进步呢!一切都是很模糊。

很快,我在我们班里的表现还不错,还有我的同学们也很支持我
,于是我就成为了我们班的学习委员了!能够在大学里也作学习委员,心理是很高兴!就是成为了学习委员,使我认识了她----我生命中的美丽的流星。

她很优秀,很清纯,很可爱!她是大班里的学习委员,学习方面狠强
。于是,我们就有了见面的机会。身为小班的学习委员,我们之间要经常联系。就在这种所谓的工作关系中,不知不觉,我发现我对她的感觉越来越强烈了!她是很可爱很卡通的类型,被我们大班的人称为"小卡通",这正是所喜欢的类型!于是我们开始了接触,我们一起聊天,一起解决问题,一起分享我们的内心的感情。当我孤单,郁闷的时候,我就会给她发短信;当她有什么事情的时后,她也发短信跟我分享!在夜里,我们发短信各给对方一直到深夜。那时候真是盼望晚上的到来!一切都在进行着,我们也都在刻苦着。我常常想,如果没有新加坡这个事情,我是多么的幸福啊!

第二,浪漫篇:

时间一天一天的过去,不知觉中,2个月就过去了!大班里经常会组
织一些很有意思的活动,比如舞会啊!那是在周末,我们系里办了一个舞会,于是,我就约了她做我的舞伴!于是好盼望周末的到来!当时间到了的时候,我很是紧张又兴奋,因为这是我第一次和女生在一起跳舞,况且还是和我很喜欢的女生!
跳舞中,她不是很兴奋,也许是她不喜欢这总场合的缘故吧
!于是我们就静静的坐了下来,静静的看着别人。她有点沉默。于是我就开始跟她聊天,帮她分担她的郁闷!于是我们又出去外面,一起看夜色,尽管夜色很暗,但是我的心情还是很高兴。因为我很高兴我能够分担她的难过。很快,舞会就结束了,我也很不舍地送她回去了。回来的时候还在不断沉醉在刚才跳舞的情景。晚上,又是短信的时间!

她说她很喜欢打乒乓球,但是她不会打,很自然,我就自告奋勇的说
我可以教她。那是周末,我们特地逃课去打乒乓球。她很"笨",连基本的动作都不懂!于是我就取笑她,说她简直就是书呆子,学习厉害,其它的都一窍不通。她也取笑我,说我打得也不怎么厉害,却要教人!就在相互取笑中,我就跟她打球,一直打了2个小时,尽管我没有交到她怎么打球,我们还是一起聊了很久!

一切都很好,我现在也还是很怀念这一段幸福的日子!

看雪篇,快乐篇:

不久后,我们就收到通知,说我们今年又来新加坡留学的机会
,还有我也被幸运的选上去参加考试,她的成绩很好,她也被选上。但是她没有参加考试,我再三问她为什么她不要考,这样我们就可以一起来新加坡。她回答道,她的父母不让她来新加坡,并且她的目标在更远大的地方。我犹豫了,我不知道我该不该去考试。心情是很复杂很矛盾的,我就是想要出来看一下世面,然后充实一下自己;但是她。。。。

最后,经过了我的艰难选择,我还是决定我要参加这个考试。

一切都很顺利,考完后第二天我就收到了我被国立大学录取的消息
!当时的心情真是又高兴,又失落。高兴的是我证明了我自己,失落的时因为她没有来考试!

当我告诉她这个消息的时候,她冷冷的笑了一下,"祝贺你啊!"。
我无语,沉默。我知道,她的心情也特别地复杂,她也不知道该怎么
说才好。
就这样,我们就只有默默地等着那一天---我离开的那一天
,的到来。

不久,天下起了雪,很大很大,在11月份下这么大的雪
,是很反常的事情,有生以来第一次看到雪,心里是莫名的兴奋和喜悦!我再想,是不是上天对我的眷恋,让我再离开中国之前看雪呢!也许是我多愁善感了吧!

第二天,我一大早就冲了起来,来感受生命中的第一次雪。尽管很冷
,我还是有一颗很火热的心情。于是,我约了她出来,一起赏雪。她是北方人,对雪已经是司空见惯,看到我的兴奋,她很是惊讶!

当人多起来的时候,我们就在哪里堆雪人,打雪仗。这些情景都是我
再电视或者在书本上看到的,现在居然我也能感受到,而且还跟我喜欢的人在一起,我不得不觉得我真的很幸福!她可能被我感染了吧,也变得很兴奋起来,我们就在那里玩雪,战斗,一直到要上课了,我们才走!

那一天是我最快乐的一天!

伤感篇

那一天玩雪过后,我一天都快乐着,直到收到她的很伤感的短信。
在自习室中,我的手机震动,打开一看,是她发的短信:

"下雪了,好美啊,你在生命中第一次看到雪一定很兴奋吧
!雪在不停的下,就像时间一样。"

"雪是美丽的,但是当你看久了之后,你就会感到厌烦了,像我一样
,现在的我看到雪,已经不再是兴奋,而是担心这怎么样去扫雪了。"

"美丽的雪或许会美丽,但是她迟早会融化的。我就是北方的雪
,能够让你感受到快乐,但是,当久了之后呢,你也会像我一样,讨厌了雪的。新加坡没有雪,当久了之后,我就会像这样的一场雪,被你淡忘,或许还会留下一点痕迹。"

我看完后,心情很难受,我不知道该怎么回信息给她了:

不,我不是仅仅因为新奇才会喜欢雪的,我喜欢的是雪的洁白,美丽

不管我见过多少次雪,感受过多少次雪,我还是会对雪有新鲜感的
。我还是会很喜欢雪的。你不时北方的雪,你是北方的朝阳,让我感到温暖。

她会答:
我是北方的雪。

我无语,在睡觉的时候,我落泪了。我该怎么对她呢
。我该不该把我的感情告诉她?


告别篇

我没有把握内心的感情告诉她,我不想给她心里负担
,尽管她早就感受到了。我对我自己说,我走后她一定会找到一个很优秀很优秀,比我好很多倍的男生喜欢她的,她也一定会很快乐的,我不要打扰她的生活,她的感情。要难过就让我难过就可以了,我不要让她有负担。
于是,接下来的时间我很少再找她玩,我们仅仅短信来联系
。我再等待着来新加坡的日子。
终于,时间到了,我的复杂的感情将在这时有了一个结束
,我将要面对一个全新的开始了,尽管我还不能够忘记她。
那一天晚上,她发短信叫我出来,她有东西送给我。
当我见到她的时候,我是多么的想说,我很喜欢你。但是
,我不能够这样,我不能够给她压力。
她默默地拿出了一个袋子,里面装着她给我的告别礼物
,就默默地走了,我也找不出拦住她的理由,默默地看着她的背影,无语。
打开她的礼物,我很感动,那是一条手链,是她自己亲手做的
,很精美,很可爱,就像她。里面还有一封信:

很高兴能够在生命中遇见你,跟你在一起的时候很开心,很快乐
。但是,你且要走了。我没有什么好说的,就祝你开心还有快乐!

下面是她写的诗:

生命的流星划过,
留下绚丽的光芒;
尽管短暂,
尽管渺茫;
却给生命留下了光彩

我是流星,
我也是雪,
流星会闪过,
雪也会融化,
但是希望能留给你
一个美好的
回忆。

当你看到这个手链的时候,
就是我。

希望你能在新加坡找到生命中的恒星与朝阳!

快乐

在信里她还画了一幅流星雨的图画。我再次无语!

总结篇:

我现在常常在想,如果我没有选择来新加坡的话,我现在是不是会和
她在一起呢!不管怎么样,我是选择了新加坡,既然选择了就不要后悔。我坚信,我会在这里找到我的恒星,而不再是流星。

你的出现

当风轻佛过,
撞击窗口风铃,
引起心头无限共鸣.
思绪如潮水不断想到你,
如果世界,
没有你的微笑,
我不会发现我的心悸动
因为你.

你的出现,
使我的情感空间变得拥挤;
你的出现,
使我默默为你祝福快乐;
你的出现,
使我的生命充满新的意义;
你的出现,
使我学会了如何去珍惜.

风仍在吹,
风铃仍然在撞击.
叮叮噹噹,叮叮噹噹.
就像我的心,
为你悸动,
就像我的心,
为你悸动..


小诗---有感

我欲乘风归去,

恐碍天上仙人.

乃临高以远望

满目仙鹤东去.

对联许许

团团圆圆

元旦夜"圆圆"煮汤圆;
上元日团团庆宵团.


辞旧迎新

冬寒渐去,望可去除旧迹:旧伤痛,旧挫败,旧悔恨。旧旧俱就;
春暖徐来,期能达成新心:成熟心,平静心,前进心。心心皆新。


小节

思往昔国外之行,尽历痛苦搓折:忙学习顾活动,烦学习之至忙,恼活动之至累,感失恋之至痛。乃是身心憔悴,痛也痛也!
忆此次国内之旅,历揽各地明景:感唐风触秦韵,涉华山之奇险,观园林之奇秀,叹上海之奇容。可谓感触颇多,快哉快哉!

小对

笼中鸟,因刘备,望张飞,无奈关羽;
庙里僧,期悟空,定八戒,六根悟净.

画上荷花和尚画;
霜冷长河藏冷霜.

山坡羊--有感大学


书如峰聚,
lab如宇阔,
知识海里苦寻觅.
望今书,
志模糊,
伤心时光飞逝过,
功课万篇都作了土.
松,自己苦;
紧,自己苦.

天净沙--无眠

寂夜长空冷风,
帘外树影絮声,
桌前孤灯课本.
抬头远望,
天际外现朝阳.